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Overview

1. Wetting and Topography
« Super-hydrophobicity
 Roughness and Air Trapping/Liquid Penetration

« Surface Structures - Lithographic Fabrication

2. Theoretical Ideas for Acoustic Waves
e Acoustic Reflections - Positive Af ?
 “Slip” Boundary Conditions and Trapped Mass

3. Experimental Data
e Acoustic Reflections - Positive Af ?



Super-hydrophobic Surfaces

m Water Drop (~ 2 mm)
liquid
Os vapour

smooth solid surface

w@ vapour

rough solid surface

 Hydrophobised SU-8 - Flat versus Circular Pillars
— Height is 30 um, diameter is 15 pum and separation is 15 um




Wetting and Topography

Complete Penetration Air “Trapping”
Displace liquid Displace liquid
surface = surface =
Liquid "xqqoo vapor { Liqui ~ ™. vapor
drop [9N LG9 IR LN A L.
_ — NA —— o B — NA —— _
solid Vapor ~olid

Surface Free Energy Changes

AF =(ygq —ysy )FIAA+ )y COSOAA AF =(ygq —ygqy) frAA

+¥Lv 98A+ )y COSANA
Wenzel's Egn . Modified (Cassie Style) Egn
cosBR = r(ysy —yq )/ vy =rcosfs | cosdR = rf cosd — g

r =AA, J/ AA = roughness factor: f = fraction of rough surface wet



Effect of Topography - Equilibrium
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Roughness/Topography Super-hydrophobic
6.5 > threshold Air “trapping” (“Skating case”)
= enhances hydrophobicity = most existing examples
6.5 < threshold Pressure

= enhances film formation = alr trapping disappears



Effect of Topography - Air “Trapping”

e Liquid Penetration into Texture a (1-@
@=solid fraction, (1- g)=liquid fraction e

r = roughness ‘ I h

Liquid film penetrates when:

1-¢s

Critical angle 8, is in 0 to 90° range costy > . oS,
o “Skating” Drop
Liquid bridges from one peak to next cosOR = -1+ %(coseesﬂ)
o Air “Trapping” and Roughness
Sinusoidal model gives critical roughness for a2 65
installation of horizontal contact line e =1+— =

(e.g. for 120°, r =1.75 = jump in §3to > 150)
Also, sharp features promote “skating”



Effect of Topography - Aspect Ratio

« Air Trapping and Aspect Ratio
As roughness increases system jumps from blue to red curve
Alternatively, for given roughness, jump occurs as smooth

surface angle increases
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Experimental Approach
Lithographic Principle SEM Images

patterned photoresist
hydrophilic/hydrophobic

substrate

photoresist base layer

SU-8 Photoresist

Pillars or Holes

2-30 um diameters
Square lattices

Different shapes

Height varied O to 30 um
(bottom image is 4 pum pattern)

Maxtek and Network Analyser




Super-hydrophobic OCR - First View
o Effect on QCR?

Response In air versus response in water (Maxtek system)
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e Is it possible to have a positive frequency shift?



A Mechanism for Positive Frequency Shifts?

« Effective Acoustic Cavity Length
' top surface of crystal has uniform reflectivity
If air “trapping” occurs, reflectivity of peaks

and troughs differs
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Average cavity length decreases

v=flA =

f Increases



“Slip” Boundary Condition

* Average Position of Reflecting Interface
— Slip length, b, to model average position of a rough/diffuse
or patterned solid-liquid interface (i.e. not molecular slip)

« Boundary Condition : ,
— Extrapolate fluid speed ¥
gradient from bulk liquid - liquid
Vs(z=0) =V (2= -b) oy,
to first order equivalent to b crystal
condition on stress at interface
d .
Vs(z=0)-Vv¢ (2=0) = —b(vf} Negative b
dz )__ . :
z=0 | effective interface moves to

liquid side of boundary




“Slip” Boundary Condition v Trapped Mass

e Acoustic Impedance nosi
. dip P>
— Use slip length, b, and look TR odin
at first order calculation 1+/7fZL
* Newtonian Liquid | z"SP < fiapins
— Kanazawa result for no-slip
— “Slip” correction uses b/o (A—wj =[A—wj [1—2—bj
W Jdip @ Jnodlip o

 Negative b and Trapped Mass
— Define a mass as Am=bp, slip” correction

(A_a)j ~(_ 2bj(ij _ «Amy Sauerbrey result for
W/ additional O N @ Jnodip T HsPs “rigid” liquid mass




 Negative Slip Length Kanazawa liquid
response

Diagrammatic Interpretation
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Order of Magnitude Estimates

e Limitations on “Slip” B.C./Trapped Mass View?

— Effectively assuming equal reflectivity at peaks and troughs
of topography/roughness

= Cannot necessarily use additivity (liquid entrainment +
trapped mass) when air trapping occurs

e Positive Af?

Air “trapping” increasing f versus entrainment decreasing f ?

o Effective QCR Cavity Lengths, w
v=fA = Aw/w= -Af/f (V approx constant)

f=5MHz w=330pum Aw | Af |
100 A 150 Hz
100 nm 1.5 kHz
1pum 15 kHz

10 um 150 kHz



Liquid Penetration of Patterned OCR

* Non-hydrophobised Pillars on QCR

5 um diameter and 8 pm high
Response to water (Maxtek)
Response changes as water penetrates into pattern from edge
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Super-hydrophobic OCR

o Pattern Composed of Holes (& Network Analyser)

Non-hydrophobised Hydrophobised

Baseline less
shifted

Major peak less
influenced

— Immersed in Water 1
- - -Immersed in Water 2 2nd peak

-+ --Water Removed appears in water
—— Completely Dry

— Dry Hydrophobised
2nd peak

appears in water

— |Immersed in Water

— Dry Non-Hydrophobised

-250 -150 -50 50 150 250-250 -150 -50 50 150 250
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Single resonance in air, but double resonance in water




Frequency / MHz

Positive Freqguency Shift - Anomaly?

 Recall the Anomaly Spectrum measured months later
using same device
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e Micro-roughness?
For small peak-trough separation, double resonance will merge and
distort shape of peak in water. Double resonance only occurs in
liquid. Peak in water may appear to have higher f than in air.



Conclusions

Achievements

Controlled Surface Structure
Super-hydrophobic surfaces

Concept of Acoustic Reflection
Applied to patterned surfaces

“Slip” Boundary Condition

Negative length = trapped mass

Preliminary QCR Measurements

Network analyser v Maxtek

The End

Comments

Micron Length/Height Scales

Applied to QCR

Positive Frequency Shifts?

Entrainment versus cavity length

“Trapped” Air?

Reflectivity of peaks v troughs

Resonances

Double resonance in liquid
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